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1 Introduction

Experiments with loading densities, feeding regimes, and time of release,
to name a few factors, have been conducted for years at anadromous fish
hatcheries. The effects of these treatments on responses such as ocean sur-
vival rates and contribution rates to particular regional fisheries need to be
assessed using appropriate statistical methodology. Most classical experi-
mental designs and analyses begin with an assumption of statistical indepen-
dence, i.e., the probability of an experimental unit taking on some value is
not affected by the response of a different experimental unit.

The purpose of this report is to describe a procedure for detecting statis-
tical dependencies between fish and to present the results of an application
of the procedure to real data. In particular attention is focused on the dis-
tribution of recoveries of coded-wire-tagged salmon in troll catches off the
Washington coast. It has been noted by others [3] that it appears that re-
coveries of a given tag code tend to cluster by catches. E.g., if there were 50
catches of roughly equal size during a week in some area and 20 total recover-
ies of a particular tag code, then the majority of the recoveries are found in a
few catches. Such a phenomenon would be consistent with a theory that fish
schooling is a function of kinship, a particular theory being one of inherited
pheromonal attraction|[2].

The basic idea behind the procedure described in this report is that if the
fish do not cluster or school on the basis of kinship, or say hatchery of ori-
gin, then the distribution of recoveries should be relatively evenly distributed
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across the catches. To say this in conventional statistical terms, the distribu-
tion of recoveries should be homogenous with respect to catch and the test
applied is generally referred to as a test of homogeneity of proportions.

2 Summary

There appears to be little evidence that recoveries of fish in the Washington
ocean troll fishery cluster by stock of origin on a weekly-WDF! catch area
basis. Statistical tests of the hypothesis of homogeneity of recoveries by stock
type were conducted on 1988 and 1989 data and significant deviations from
homogeneity occured only sporadically.

This does not prove that fish do not school with fish of like origin in
the ocean, however. There are a couple of possible explanations for the
apparent independence of recoveries and stock origin. One is that even if
there is clustering of fish stocks in particular catches, the percentage of the
catch that is identifiable by stock is so low, generally less than 5%, that it
is extremely difficult to detect the clustering. Another possibility is that the
troll fishery operates in such a manner that an individual boat’s catch is more
of a random sample of the fish in an area than a random sample of clusters
or schools of fish. For purse seine catches of chinook salmon in Alaska, for
instance, it has been observed that most of the recoveries of tagged fish were
found in a few catches [3], but I have not analysed this data.

Again, however, based on the current level of information for the Washing-
ton ocean troll fishery, I have found little evidence for statistical dependency
in the catches with respect to stock.

3 Methods

The analysis methods are aimed at testing the hypothesis that for some
spatial-tempora} level of resolution the fish are evenly mixed with regard
to their region of origin. There still might be clustering occurring, but the
basis for clustering is not a function of kinship. Assuming that the total
population of fish is large relative to the harvest taken, each catch can be
viewed as a draw from a multinomial population where the attributes are the

1Washington Department of Fisheries.




region of origin. A two way classification of the harvested fish by catch and
region of origin (which includes unknown region, or untagged fish) yields a
contingency table.

A standard statistical procedure for the analysis of a contingency table for
the homogeneity of proportions in each sample, in this case each catch, 1s a
chi-square test of homogeneity®?. The accuracy of the chi-square test depends
upon how closely the calculated test statistic follows the null distribution.
The null distribution is chi-square with degrees of freedom equal to (C-1)x(R-
1), where C is the number of catches and R is the number of regions of origin.
The calculated test statistic, unfortunately, is very poorly approximated by
a chi-square distribution when the table is sparse, i.e., when there are cells
with 5 or fewer counts.

The tables generated for the Washington ocean troll fishery were very
sparse. An example is presented on the next page.

2An asymptotically equivalent procedure is a likelihood ratic test based on an under-
lying multinomial distribution.
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3The first column is the number of fish of unknown origin. Details of table construction
are given below. This particular table is for the 1988, statistical week 19, catch area 74

troll fishery with ”stocks” being tag codes pooled by common hatchery and release sites.




The methods described in this report are procedures for analysing sparse
contingency tables. Several methods have been developed to deal with this
problem, but I have chosen to use just two of the procedures which appear
to perform well based on simulated test examples. The two procedures are
the iterated bootstrap test and a monte carlo version of an exact test. Before
detailing the procedures, the way the tables were constructed and the pooling
of tag codes are discussed.

3.1 Table creation and pooling of tag codes

There were several steps to the table preparation. Three types of data files
containing catch, fish head labels, and CWT code information, respectively,
were provided by WDF. Information about the hatchery and release sites
corresponding to each code were provided by the U.S. Fish and Wildlife
Service. Each record of a catch file contains information about total catch
size and the number of chinook and coho fish heads taken. Each record of
the head label file corresponds to a particular head and provides information
about the catch it came from. Finally each record of the CWT code file
corresponds to a fish head and reports the tag number if available (i.e., if a
tag was found in the head and it was readable).

To create a two-way table, a computer program first read a single record
of the catch file, and retrieved the time-area-gear information and the number
of chinook and coho heads taken. The head label file was then read, searching
for the records corresponding to each chinook and coho head in the catch.
There were many instances where not all the heads could be accounted for-
such heads were then lumped into the ‘unknown’ stock category. Then for
each head in the head label file, the CWT code file was read and the CWT
code found. There were several instances of unknown CWT codes, either no
tag was found or the tag was unreadable. These heads were also tallied in
the ‘unknown’ stock category.

Three important digressions:

¢ Should the unknown category be included in the table? Under the
null hypothesis of homogeneity, the probability of a stock being un-
known is simply the sum of the probabilities for all the untagged stocks.
If the untagged stocks were not homogeneous but their proportions
summed to a constant value, then the tests will fail to detect the non-




homogeneity because of the aggregation. If the proportions do not sum
to a constant value, however, then given sufficiently large deviations
in the unknown proportion between catches, the test should detect the

non-homogeneity.

s Is the treatment of the missing or unreadable tags appropriate? If the
missing or unreadable tags are missing at random, i.e., independently
of catch and stock of origin, then the inclusion of those fish in the
unknown group should not affect the probability of a fish being in the
unknown category.

e Should catches that are quite small in total number be included in
the tables? In some cases the troll boat catch was only 1. I do not
know how much such small catches affect the power of the test to
detect deviations from homogeneity. I did conduct the tests on several
reduced tables where only catches greater than 20 were included, but
found little difference from the results for the full tables. The results
presented later include all the catches in a given time-area cell. The
issue of testing power was not explicitly addressed, however.

Two levels of aggregation of tag codes were analyzed. The first level
was at the finest stock identification resolution available. All recoveries with
identifiable tag codes were tallied in a category unique to the tag code; all
unidentiable recoveries, due to lost tags or unreadable tags, were aggregated
in the unmarked category.

The other level of resolution was to pool all tag codes that came from
the same hatchery, were released from the same site in the same year, and
were the same species. This approach is not an ideal means of aggregating
tag codes since different tag codes might still be associated with different
hatchery treatments. However, given the available data, it seems a reasonable
means of pooling tag codes.

3.2 The iterated bootstrap test

The iterated, or two stage, bootstrap test is a computer intensive, non-
parametric general purpose hypothesis testing procedure proposed by Beran
[1]. It is a refinement of the notion of single stage bootstrap hypothesis test-



ing that reduces the magnitude of the potential bias in that procedure. The
mechanics of the procedure are as follows.

1. Choose a test statistic such that large values of the test statistic suggest
a deviation from the null hypothesis.

2. Generate n-1 bootstrap samples and calculate n-1 test statistics for
each sample.

3. Calculate the relative rank of the original sample’s test statistic. This
is the first stage p-value.

4. From each of the n-1 bootstrap samples, generate m-1 ‘second stage’
bootstrap samples, treating the ‘first stage’ samples as if they were
real samples. Calculate m-1 test statistics in each case and calculate
p-values for each ‘first stage’ test statistic relative to the ‘second stage’
test statistics.

5. Calculate the relative rank of the first stage p-value to the n-1 p-values.
This is the second stage p-value and the basis for ‘rejecting’ or ‘accept-
ing’ the null hypothesis.

One might visualize the process as one of creating an n-1 by m-1 matrix of
test statistics, where in the leftmost column sit the n-1 first stage bootstrap
sample test statistics. For each row r all the columns to the right of the first
column contain the second stage bootstrap sample test statistics based on
the rth (bootstrap) sample. n-1 p-values are then calculated on the basis of
rankings of the first column’s test statistic value relative to the rest of the
row entries.

Symbolically, the first stage p-value for the observed test statistic T,

#I*>T
p =,
n
and the second stage p-value,
#P"Sp
D= ._...._..._..__._l,
n

where #T™ and #p* refer to the bootstrapped test statistics and p-values.
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3.3 A monte carlo exact test

The monte carlo exact test is an extension of Fisher’s exact test (FET), a
testing procedure for analyzing 2 by 2 contingency tables. I’ll briefly explain
the logic behind the FET for tests of homogeneity. The 2 by 2 table is
a classification of entities from 2 samples (of fixed sizes) into one of two
categories, say successes and failures. Suppose that the samples are simply a
random division of the n, + n, objects and the number of successes, m_, was
fixed beforehand. Then the arrangement of m, successes in sample 1 and
m. — m; successes in sample 2 is due to chance alone. The FET p-value is
simply the calculation of the probability of getting a table with successes as
‘extremely unbalanced’ as was observed. E.g., if the samples were of equal
size and there were 10 successes in sample 1 and 1 success in sample 2, the
p-value is the probability of 10 or 11 successes in sample 1. Incidentally,
this is just the calculation of hypergeometric probabilities where n_ is the
population size, m_ is the number of ‘successes’ and n; is the sample size.
The extension to two way tables with more than 2 categories is to fix
the row and column totals and calculate the probabilities for all tables with
probabilities of occurrence that are less than or equal to the probability of
the observed table. The monte carlo test modification is simply to generate
tables with the same row and column totals and calculate the probabilities
empirically. The algorithm used for this project is one developed by Patefield

[5].

4 Results

The choice of a spatial-temporal resolution at which stocks are hypothesized
to be randomly mixed is somewhat arbitrary. Atone extreme one might begin
by assuming that the entire Washington coast fish population is randomly
mixed throughout an entire fishing season which may span 4 or 5 months. I
chose to begin at a much finer level, however, intending to aggregate levels if
homogeneity was not disproved. The temporal level chosen was a statistical
week and the spatial level was a Washington Department of Fisheries catch
area.
The data came from 1988 and 1989 catch samples of the Washingion
coastal fishery collected by WDF port samplers at Ilwaco, Westport, La



Push, and Neah Bay. The particular weeks chosen were weeks 18 through
30. Although there were some relatively large catches for some weeks after
week 30, they were not included in the analysis because of the potentially
confusing influence of freezer boat catches *. The primary areas covered were
1, 2, 3, and 4, corresponding to the four ports, although some of the catch
came from areas 5, 74 and 84. I further restricted attention to troll catches
only. Sport catches are rarely large enough to yield one recovery, let alone
multiple recoveries.

For the exact test 999 random samples of tables with fixed margins were
generated. For the iterated bootstrap 99 iterations of the first stage were
combined with 99 iterations at the second stage (for each of the first stage
samples). The tables on the following pages present the estimated p-values
for both tests for areas 1, 2, 74, and 84. The first set of tables are based
on contingency tables where each unique tag code is treated as a distinct
outcome and results are presented for 1988 and 1989. The second set of
results are based on contingency tables with tag codes pooled by common
hatchery-release site combinations, as was discussed earlier, but includes only
1988 data.

*‘Freezer boats ... may fish for weeks and accumulate Jarge numbers of fish that aren’t
accounted for on fish tickets until the season closes.[4)’
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4.1 Unpooled tag codes
Area 1 results- 1988

Week
19
20
21
22
23
24

#Fish
153
274
209
19

33
420

#Catches
13

11

16

5

7

35

25-30: 0 catch (mostly)

Area 1 results- 1989

Week
19
20
21

#Fish
96

83

5

22-30: 0 catch

Area 2 results- 1988,

Week
18
19
20
21
22
23
24
25
26
27
28
29
30

#Fish
51
1868
1872
2493
2376
1118
2889
730
851
202
178
196
286

4t Catches
2
5
1

F#Catches
15

166

147

194

i61

139

214

56

2

o -

#Tagcodes

13

12

#Tagcodes

#Tageodes
1
44
55
70
72
3
73
31
39
10
10
7
16

10

Exact(999)
0.85
0.93
0.76
0.58
1.00
0.31

Exact(999)
0.32

NA

NA

Exact{999)
0.23
0.01*
0.12
0.46
0.59
0.96
0.43
0.21
0.46
0.82 -
1.00
0.45
0.54

Boot(99*99)
0.72
0.91
0.76
0.49
0.49
0.41

Boot(99*99)
0.30

NA

NA

Boot{99*99)
0.15
0.04*
0.11
0.26
0.58
0.96
0.47
0.26
0.58
0.83
0.96
0.36
0.60



Area 2 results- 1989,

Week
19
20
21
22
23
24
25
26

Area 74 results- 1988,

Week #Fish
18 9

19 249
20 648
21 585
22 555
23 456
24 1735
25 2794
26 210
27 434
28 433
29 52
30 133

Area 74 results- 1989.

Week
18
19
20
21
22
23
24
25
26
27
28

#Fish
3244
2321
1875
2028
3429
2582
1157
14

#Fish
0
371
4
67
262
264
386
46
100
11

0

#Catches
159

151

94

112

118

101

70

4

#Catches
2
28
17
21
10
12
26
32
8
19
24
8
10

#Catches
NA
5

2

2

4
13
11
9

8

2
NA

#Tagcodes
80

70

56

61

86

74

42

0

#Tagcodes
0

12
30
33
34
17
48
82
4
22
4
0
2

#Tagcodes

28

1
15
19

NA

11

Exact(999)
0.45

0.73

0.03

0.24

0.01*

0.05

0.21

NA

Exact(999)
NA
0.40
0.01*
0.48
0.37
0.34
0.11
0.29
1.00
0.09
0.20
NA
0.69

Exact(999)
NA
0.32
1.00
0.63
0.00*
0.82
0.75
NA
0.44
NA
NA

Boot(99*99)
0.31

0.71

0.05

0.13

0.01*

0.15

0.27

NA

Boot(99*99)
NA
0.50
0.03*
0.56
(.48
0.37
0.21
0.40
0.77
0.22
0.20
NA
0.50

Boot(99*99}
NA
0.48
0.57
0.44
0.01*
0.66
(.86
NA
.55
NA
NA




29
30

Area 84 resulis- 1988,

Week #Fish
18 285
19 394
20 369
21 312
22 455
23 407
24 350
25 93
26 133
27 1
28 13
29 4
30 62

Area 84 results- 1989.

Week  #Fish
18 280
19 124
20 96
21 218
22 1604
23 152
24 117
25 180
2 179
27 65
28 0

29 0

30 211

129
371

S

#Catches
54
44
43
40
56
47
b0
24
26
1

2
3
4

#Catches
40
28
23
36
37
15
-
32
24
14
NA
NA
7

#Tagrodes
4

9

13

12

14

11

11

0

=R i v R o I

#Tagcodes

[0 B oo

G D Oy WD e G0
-

12

0.75
0.83

Exact(999)
0.45
0.12
0.37
0.06
0.48
0.44
0.15
NA
0.11
NA
NA
NA
0.60

Exact(999)
0.35
0.55
0.79
0.33
0.00*
0.19
0.06
0.71
0.56
091 .
NA
NA
0.84

0.80
0.86

Boot(99*99)
0.40
0.08
0.30
0.09
0.46
0.33
0.10
NA
0.26
NA
NA
NA
0.35

Boot(99*99)
0.45
0.54
0.82
0.28
0.04*
0.24
0.04*
0.80
0.43
0.70
NA
NA
0.86



4.2 Pooled tag codes: 1988 only
Area 1 results- 1988

Week
19
20
21
22
23
24

#Fish
153
274
209

19

33
420

#Catches
13

11

16

b

7

35

25-30: 0 catch (mostly)

Area 2 results- 1988.

Week
18
19
20
21
22
23
24
25
26
27
28
29
30

Area T4 results- 1988.

Week
i8
19
20
21
22
23
24
25
26
27

#Fish
51
1868
1872
2493
2376
1118
2889
730
851
202
178
196
286

#Fish
9
249
648
585
555
456
1735
2794
210
434

#Catches
15

166

147

194

161

139

214

56

Q0 L2 ~1 O kD

#Caltches
2
28
17
21
10
12
26
32
8
19

#Tagcodes
5

Il

6

2

1

10

#Tagcodes
1
27
33
40
43
22
40
24
25
7
8
7
14

#Tagcodes
0

11
25
25
21
13
32
47
4

15

13

Exact(999)
0.70
0.86
0.77
0.58
1.00
0.31

Exact(999)
0.23
0.02*
0.12
0.32
0.40
0.72
0.43
0.18
.31
(.93
0.99
0.45
0.59

Exact(999)
NA
0.28
0.01*
0.46
0.45
0.39
0.01*
0.22
1.00
0.13

Boot{99%99)
0.64
0.85
0.77
0.49
0.49
0.37

Boot(99*99)
0.15
0.03*
0.15
0.14
0.41
0.97
0.63
0.22
0.45
0.94
0.99
0.36
0.61

Boot(99%99)
NA
0.36
0.03*
0.55
0.57
0.54
0.17
0.33
0.77
0.26



28 433 24 4 0.20 0.20

29 52 8 0 NA NA
30 133 10 2 0.69 0.50
Area 84 results- 1988.

Week #Fish #Catches #Tagcodes Exact(999)  Boot(99*99)
18 285 54 4 0.45 0.40
19 304 44 B 0.05* 0.02*
20 369 43 11 0.38 0.33
21 312 40 10 0.07 0.08
22 455 56 12 0.53 0.48
23 407 47 11 0.44 0.33
24 350 50 9 0.18 0.11
25 93 24 0 NA NA
26 133 26 4 0.18 0.30
27 1 1 0 NA NA
28 13 2 0 NA NA
29 4 3 0 NA NA
30 62 4 2 0.06 0.35

5 Discussion

First, the two tests yielded generally similar results throughout all the con-
tingency tables. I had made some preliminary comparisons between the
procedures on non-sparse matrices, ones for which the ordinary chi-square
test of homogeneity would perform well. The results of these comparisons
indicated that the exact, the iterated bootstrap, and the usual chi-square
tests yielded essentially identical results. The consistency with sparse ma-
trices between the monte carlo exact test and the iterated bootstrap tests is
reassuring. E

The results of the tests for tables in which tag codes are separated at
the finest resolution did not differ that greatly from tests of tables based on
pooled tag codes. The number of tag groups often greatly decreased after
pooling, e.g., 1988, area 2, week 21 tag groups decreases from 70 to 40. But
the decrease in sparseness really did not alter the results ‘significantly’.

As a sample table indicated earlier these were extremely sparse tables to
analyse. With the exception of the unknown category the observed propor-
tions for particular categories were generally less than 1%. How sensitive the
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tests are to deviations in the ‘rare’ categories was not examined. Inspection
of some of the cases of significant non-homogeneity suggests that instances
of 3 or more recoveries of one rare type in one catch with 1 or fewer of the
same category in other catches could be the reason for a small p-value. In
other cases it was more likely variation in the percentage in the unknown
category- wide variation here is indicative of non-homogeneity, too, as was
explained in the Methods subsection on table creation.

When a large number of tests are conducted one expects to find instances
of small p-values even if the ‘true’ proportions are homogenous because of
sampling variation alone. 106 tests were carried out with 6 instances in which
both the exact test and the iterated bootstrap both yielded p-values less than
or equal to 0.05. The expected number of falsely significant results for 106
tests when testing at the 5% level is 5.3 occurrences. There is little evidence
for consistent non-homogeneity of stock proportions in the Washington ocean
troll fishery on a weekly-catch area basis. This could be because the troll
fishery itself catches fish at random throughout an area. lLe., the troll fishery
is not intensively fishing schools of fish at random, where the pools may be
segregated by stock type or ‘kin’. On the other hand it could be that because
the samples are largely unidentifiable in terms of stock type, roughly 95/in
the proportions are too difficult to detect. Given the current information,
however, there is insufficient evidence for clustering of salmon by kin in the
Washington ocean troll fishery.
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